
r

NASA Contractor Report 166070
I__

__ _.__ - -: _ - _ _ _ =

FAULT-TOLERANT SOFTWARE
FOR THE FTMP

Herbert Hecht and Myron Hecht

Prepared for

THE CHARLES STARK DRAPER LABORATORY, INC.
Cambridge, Massachusetts

By

SoHar Incorporated
Los Angeles, California

Final Engineering Report
Subcontract 564
Prime Contract NAS1-15336
March 1984

[N&S&-CR-]66070)
FOR THE FIMP Final

82 p HC &O5/MF A01

FAUI_-TCLE_ _NT SOFTWARE

Report ISobaR, Inc.)
CSCL 09B

G 3/62

N86-24276_"

Unclas

06031

\

\
\

Review for general release March, 1986

COPY CONTROL NO......

N/ A
National Aeronaul,cs and
Space Admln_strahon

Langley Research Center

Hampton Virg n_a 23665

i

TABLE OF CONTENTS

1. Introduction ,. 1

1.1,

1.2.

1.3.

1.4.

Recovery Blocks,.......3

Functlonal DescrIptlon of the Dlspatcher6

Coverage of the Primary Routine Fallures 17

Software Errors Not Covered By Dispatcher
Acceptance Tests 24

2. Functional Acceptance Tests ,, 25

2.1.

2.2.

2.3.

2.4.

Dispatcher Acceptance Tests 27

Interval Timer Acceptance Test,. 37

Input/Output Acceptance Tests.,. 40

Applications Routines ,,, ,,,, ,...,43

3. Structural Acceptance Tests ,.., 44

3.1. Errors In SLIP and R.DONE °...45

3.2. STUCK IN R4 Acceptance Test ,,.48

3.3. KICK Acceptance Test and Modifications to KICK
Procedures , ,,,,... 51

3.4. R4 Responsible Acceptance Test 53

3.5. Uninterruptible Code Acceptance Test,,,56

3.6, Retirement Acceptance Test , °°.62

4, Alternate Dispatcher , ,,.,,,.,, ,,°,65

4.1. Alternate Dispatcher Requirements ,,,,..65

4.2. Description of the Alternate Dispatcher..,,..,.....68

References, ,.,..., ,.., 70

Appendix A: New Variables Required°,,,°.,,....°....,71

Appendix B= Unlnterruptlble ASM routines,,.,,.,o.73

List of Figures

1.1

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

Implementatlon of the Recovery Block for the F_14_

R4 Frame Initiation -- Interrupting R3 and R1

R4 Frame Termination -- Resume R3

R4 Task Invocation Procedure Control Flow

R3 and R1 Task Invocation Procedure Control Flow

Pend and Activate Handling

Interrupt Handling

Top Level Fault Tree for the FTMP Dispatcher

Initialization Faults

1.10. Execution Order Failures

1.11. Timing Failures

1.12. Recovery Block Faults

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

Sequence of Timer Interrupts and Dispatcher Acceptance Tests

Fault Tolerant Provlslons for the FTMP Dispatcher

Dispatcher Critlcal Word Acceptance Test Module

Frame Count Acceptance Test Module

Frame Counters

Critical Word Reset Acceptance Test Module

Interval Timer Acceptance Test

4

8

10

12

13

15

16

18

2O

21

22

23

26

30

31

33

35

36

39

P.RECEDING PAGE BLANK NOT

iii

Llst of Figures (continued)

5.1. SLIP Acceptance Test

3.2. R.DONE Acceptance Test

3.3. STUCK. IN.R4 Acceptance Test

3,4. KICK Acceptance Test

5.5. R4.RESPONSIBLE Acceptance Test

3.6. Unlnterruptlble Code Acceptance Test= Triad Working

3.7. Unlnterruptlble Code Acceptance Test= Triad Idling

2.8. Retirement Acceptance Test

4,1, Alternate Dlspatcher

47

47

50

50

55

59

61

64

69

iv

_I-- INTRODUCTION

This Is the Final Engineering Report prepared for The Charles Stark Draper
Laboratory, Inc. under Subcontract 564 (Prime Contract NAS1-15336}, covering
technical assistance In fault tolerant software development for the Fault
Tolerant Multlprocessor (FTMP). Thls report satlsfles Item 4.5 of the
subcontract.

The FTMP is a highly reliable computer Intended to service reliability-critical
applications In scheduled aircraft servlce. Work on the architecture to provide
the required hardware fault-tolerance has been In progress since the
mld-slxtles, and has evolved Into a well-understood highly redundant system
described In ref. 1. Although this design effectively addresses the detectlon,
masking, and el lmlnatlon of hardware faults, It can not circumvent failures due
to software faults.

The work reported on here provides protection against software failures In the
dispatcher of the FTMP, a particularly critical portion of the system software.
Faults In other system modules and In application programs can be handled by
similar technlques but coverage for these was not provided In this effort.
Goals of the work reported on here are (1) to develop provisions In the software
design that will detect and mitigate software failures In the dispatcher portion
of the system executive and (2) to propose the Implementation of specific
software rellabIIIty measures In other parts of the system. In proceeding
toward these goals, the followlng constraints were observed:

the coverage of the dispatcher was to be complete; no potential failure
modes were to be overlooked due to difficulty of Implementation, and

the additional software required for lmplentatlon of fault tolerance was to
be simple, to minimally affect the design and the operation of the current
system, and to minimize the Introduction of new variables.

All of these requirements have been met by the design described In later
sections of this report, and a basis has therefore been provided for augmenting
the hardware fault tolerance provlslons of the FTMP with equally effective
measures for software fault tolerance.

Beyond the specific support to the FTMP project, the work reported on here

represents a considerable advance In the practical application of the recovery

block methodology for fault tolerant software design. The operations carried

out by the dispatcher are primarily In the area of logic and sequencing, and

error detection techniques for such operations are more difficult than for

programs dealing wlth flight data for which reasonableness tests based of
physical constraints can be devised. The acceptance tests for dispatcher

functions had to be based on logic that was Independent of the logic used In the
primary program.

In pursuing the goal of Independent acceptance tests, it was found convenient to
divide these Into two classes= functional acceptance tests which determine
compliance wlth program requirements, and structural acceptance tests which

determine adherence to a predeflned logic flow. These tests, as devlsed for the
FTMP, are descrlbed In Sections 2 and 3, respectively, and they represent an
Implementation for a particularly chal leng|ng environment. When these tests ere
not satlsfled, the program either retries or Invokes an alternate dispatcher
directly. The design for the latter, described In Section 4, Is entirely
Independent of that of the primary dlspatcher. Both the hardware and software
structure Is less flexlble (and therefore less efflclent) but correspondingly
more rugged. Because most software failures are not permanent, the alternate
dlspatcher will attempt reverslon to the prlmary one at discrete Intekvals
during routine operatlon. In this way_ the reduced efflcency of the alternate
will In most cases have very little effect on the operation of the flight
programs.

Before leaving this part of the Introduction, the authors wlsh to express their
thanks for the cooperation received In this effort from personnel of The Charles
Stark Draper Laboratory and of the NASA Langley Research Center. Dr. Albert L.
Hopkins gave whole-hearted support to this work and made many helpful
suggestions. Drs. Basil T. Smith and Jay Lala facilitated the deslgn of the
fault tolerant software by maklng the design and data for the primary dispatcher
available and patiently explalnlng details when thls was required. To Mr. Billy
L. Dove and Mr. Nlcholas D. Murray our thanks for the support of thls work and
for permitting us to participate In an Important area of fault tolerant
computing.

2

1•1• RECOVERYBLOCKS

The Inability to perform conclusive reliability evaluations on software
motivates the development of fault-tolerance techniques• Two technlques for
achieving fault-tolerance have been discussed In the recent literature= the
recovery block and N-version programming. N-verslon programming Involves a
number (at least two) of Independently coded programs for a given function that
are run simultaneously (or nearly so) on loosely coupled computers• The results
are compared, and In case of a disagreement, a preferred result Is Identlfled by
a majority vote (for three or more versions) or a predetermined strategy•

The second technlque, and the one used In the FTHP, Is the recovery block (refs•
2 and 3). The simplest structure for the recovery block ls

Ensure T

By P

Else by Q

Else Error

where T Is an acceptance test condition, i.e. a condition whlch Is expected to
be met by successful execution of a primary routine, P, or the alternate routine
Q• The Internal control structure of the recovery block will transfer to Q when
the test conditions are not met by executing Po

Implementation of recovery blocks for the FTMP Is shown In fig. 1• The primary
routine Is executed, and If the acceptance test conditions are not met, the
alternate routine Is Invoked• The number of passes through the alternate
routine Is counted, and after a predetermined limit (dependent on the
capabilltles of the primary and alternate programs, execution time, and other
factors), a transltion Is made back to the prlmary routine.

The key element of the recovery block approach Is the acceptance test. There are
two levels on whlch acceptance tests can be performed• The first Is the
functional level, I•e• that which tests that the outputs of the program are
conslstent with the functional requirements• The second Is the structural
level, which tests sections of code to ensure that key variables and functions
have been properly executed. Functional level tests are appropriate for software
that has been In use a long time because they are simpler and It avoids
unnecessary transfers• However, for programs under development, the addition of
structural tests provide the following beneflts:

• Unexpected behavlor of the primary systems will be noted even in
cases where only a mild degradation Is encountered• This aids
In program evaluation.

ORIGINAL PAGE Ig

POOR QUALITY

EXE('ilTK PRIHARY Pb'(}CIIAI4

IS ACCEPT&HCF TFST OK?

r---'--'--_'

COUNT NUMBER OF PRIMARY FAILURES

SET REPETTTION LIMIT

NIL

EXECUTE ALTERNATE PROCRAM

ACCEPTANCE TEST (FOR ALT.) 7

NOYES

COUNT NUMBER OF EXECUTIONS OF

ALTERNATE
t ,,

DO UNTIL NUMBER OF ALTERNATE
EXE_IJTIONS REACHFS REPFTITTOrl LIHIT

t

ni-j } (}l(l- V}- IY

ABORT

FIGURE 1.1 Implementation of the Recovery Block for the FTI_ o

4

e

e

Swl,chlng ,o ,he al,ernate program Is exercised more of,en under
realls, lc (unplanned) condl,lons. Provldlng realls, lc ,es, lng of ,he
faul, ,olerance mechanism Is a dlfflcul, under,aklng.

As a program matures, If Is usually easier to relax acceptance
conditions than to make them more restrictive.

5

1,2. FUNCTIONAL DESCRIPTION OF THE DISPATCHER

The FTMP task dispatching function selects an applications routine for an
available processor, relinquishes control of the processor for a set period to
enable task execution, and then returns to select the next task or pass control
to a Iouer priority executive process. By vlrture of Its multlprocessor
arrangement, the execution order of tasks is not flxed, and thus, the dispatcher
must perform the following functlons= (1) determine how frequently a task should
be run, (2) determlne whether data and predecessor tasks have been completed,
(3) Invoke the task and enable Interrupts for hlgher prlorlty Items or overtime,
and (4) maintain records of functions which have been executed along with other
housekeeping tasks. The centrality of thls function to the FTMP operation made
It a prlme candidate for the Implementation of software fault-tolerance

measures.

Because the scope of the Implementation of fault-tolerance was limited to the
dlspatcher and associated routines, the design of acceptance tests and of the
alternate dispatcher was based on a portion of the entlre systen executive.
This section presents the functional speclflcations of relevant portions of the
FTMP operatlng system upon which this report rests.

The dispatcher Is divided Into two major routines: the R4 rate group
dispatcher, designated as R4.DISPATCHER, and the R5 and R1 rate groups
dispatcher, designated as RS.R1.DISPATCHER. The R4 dispatcher performs five
major functions;

1. Initialization during system start up

2. R4 frame Initiation

3. Reading error latches and performing I/0 to the 1553 bus

4. Task selection and execution

5. Rat I rement

The R3.RI.DISPATCHER relies on the R4 dispatcher for the above functions, and
thus, It only performs task selection and execution for the appropriate rate
groups. Section 1.2.1 contains a more detailed description of the means by
which the dispatcher routine performs these functions.

A crucial requirement of the dispatcher Is that It perform Its functions within
strict timing Ilmlts. Thusp a number of routines external to the dispatcher are
necessary to maintain the proper flme references and to perform Interruptions at
approprlate Intervals. These routines are dlscussed in sectlon 1.2.2.

1.2.1. Dispatcher functions

Initial ! zat io_

Inltlallzatlon conslsts of restoring portions of the system memory to default
values and zeroing out other portions. Initialization Is entered upon a restart
flag being set to TRUE, and results In the following:

The triad to start inltlalization becomes R4.RESF_)NSIBLE
The system timer is lnltlalized
Triad busy states are set to free

Trlad status words are set to enable execution of all rate groups
Reconflguration commands and states are set to 0
The configuratlon controller Is Inltlallzed
Unlock and IPC Interrupt commands are set to 0
Error latches are cleared
The rate group control blocks for all dlspatchers are Inltallzed
Lower rate groups are set to be executed In later frames

R4 frame inltlatlon

A new R4 frame is started every 40 msec. At the start of a new frame, the R4
dispatcher takes the following actions:

lower rate groups are Interrupted and their timers are stopped
the triad states are updated
task pointers are set to begln at the top of the R4 list
lower rate groups are pended for execution at the approprlated frames
I/0 for the appropriate rate groups Is performed
error latches are read and cleared

reconflguratlon occurs If any commands are pending

The start of a new R4 frame takes precedence over all other actions. FTMP
senses the start of a new time frame when a triad responsible for the frame
restart, designated as R4.RESPONSIBLE, responds to a timer interrupt. Flgure
1.2, adopted from a CSDL briefing chart, shows the sequence of events after the
R4 Interrupt. The R4 responsible triad, shown In the center, Is the only one
whose timer Is set with the new frame time. After It performs the
initialization, It sends an lnterprocessor (IPC) Interrupt to a second triad,
which is shown as being In the idle mode. Thls second triad then starts up the
R4 dispatcher for Itself, and sends an IPC Interrupt to the third triad shown
executing the R1 rate group. The third triad wlll Interrupt execution of the
current process, freeze the timers and other relevant control variables, and
restart the R4 dispatcher.

Task selectlon and executloq

After completion of the R4 frame Initialization tasks, the R4 dispatcher enters
a task selection loop using an Internal procedure SELECT.TASK. All tasks to be
executed In the R4 rate group are contained In a list. Elements of this list,
denoted as task control blocks (TCBs), contaln Information on preceedlng and
succeeding tasks, tlme Ilmlt, and n_st recent executlon. Additional pointer
variables lead to data buffers for I/0 for each appllcatlons task and to

@

constraints, l.e. tasks which must be executed prior to the current one.

Task execution occurs by means of an Internal procedure EXECUTE which reads data
areas from the buffer I ocatlons deslgnated by the TCBs from main memory Into the
triad cache memory, starts the R4 timer, and passes control to the task by means
of an ASM procedure ACTIVATE. If the task has not run over its time Ilmltt
control will be passed back to EXECUTE upon Its completion which updates the
frame count in the TCB and sets an appropriate bit in the constraint word to
Indicate task completion.

Applications routine selection and execution continues In this manner until
SELECT.TASK finds a null value for a succeedlng task pointer. At thls point the
triad notes that the task list Is done In system memory and sets Itself as
responsible for starting the next R4 frame, updates the R4 task list In maln
memory, and restarts timers and lower rate groups which were Interrupted at the
beginning of the current frame. Figure 1.5_ also adopted from a CSDL brleflng,
shows the return of the system to lower rate group tasks. If no tasks were
Interrupted, the triad goes to an Idle process until the next Interrupt.

Retirement

The final function of the R4 dlspatcher Is to recognize the retire command
generated by the configuration controller. Retirement means that a trlad has
sustained a permanent failure and will no longer be able to execute tasks.
Retirement Involves setting the following variables=

trlad status bit to prohibit execution of the R4 rate group
setting the trlad busy word to Indicate this trlad Is not working
decrementing the R4 triad counter
inltlatlng the Idle process

If the retiring triad Is also R4.RESPONSIBLE, It must restart the R4 dispatcher
In another triad In order to provide another triad with the responslblllty of
setting the time to and starting the next frame. The means of performing this
change Is a higher priority IPC Interrupt, whlch will cause the receiving trlad
to halt execution of Its previous task until the Interrupt Is handled.

Lower rate group dispatchers

The R3 and R1 rate groups have task selection and execution functions slmllar to
the R4 rate group, but are not responsible for restart, I/0, retirement, or
Initialization. An additional function of the lower rate groups Is the
detection of a need to continue execution of their applications routines beyond
the tlme allowed In the current frame. Should the task list complete markers
for the lower rate groups not be set to TRUE, a variable designated as SLIP wlll
be decremented. The decrementing of SLIP will, when added to the frame count,
have the effect of delaying the restart of the R:3 rate group by one frame, and
the R1 rate group by two frames.

1.2.2. Timing routines associated wlth the Dispatchers

9

m

0

|

,T

U

U _ r-pr_

E "t- ¢" _ _

O_t 0"1" @
U n_" CO L_

10

Figures 1.4 and 1.5 show the sequence of execution of various procedures
associated with the R4 and lower rate group dlspetchers respectively. Those
associated with timing are underlined. As Is evident from both figures, triads
act on the basis of time-generated Interrupts. The time to the Interrupts Is
placed In a register denoted as the INTERVAL TIMER and decremented at 250
microsecond Intervals until It reaches zero. At this point a timer Interrupt Is
generated.

At the beglnnlng of a new frame, the R4 rate group dispatcher will save the
times left for Interrupted lower rate group executlons by means of the
HOLD.R3.R1.TIMERS routine. As shown in figure 1.4, the R4 dispatcher causes the
activation of the lower rate groups by polnting to the addresses of their
process state descriptors (figure 1.6) at the appropriate frames. After
completing frame Inltlallzation, the dispatchers Invoke applications routines by
means of the SELECT and EXECUTE procedures described above. Prior to passing
control to the applications routine, the dispatcher starts a timer whlch will
Interrupt execution should the applications routine run over the time limit
wrlt-Pen In Its task control block. If an Interrupt occurs, • routine designated
as the TIMER. INTERRUPT.HANDLER Is executed. This procedure determines whether a
task time-out or a new frame Interrupt occurred (If the trlad Is R4
responsible), and sets up the R4 dispatcher to be restarted In the latter case.
In the absence of an interrupt, the dispatcher repeats the process with
subsequent applications routines until the Ilst Is complete.

Upon completion of the R4 Iteration, the timers of the lower rate groups are
restarted by the RELEASE.R3.R1.TIHERS procedure, and control Is passed to the R3
dispatcher by means of a RESUIR_ statement and the PEND procedure executed at the
beginning of the frame. The R1 timer Is saved by means of the HOLD.R1.TIMER
routine, and the R3 rate group applications routines are selected, executed, and
Interrupted (If necessary) In the same manner as were the R4 applications tasks.
The R3.TIMER routines are somewhat more complicated because the times they place
In the Interval timers must also observe the total frame time Ilmlt, i.e. If _he
time_allowed for an appllcatlons routine Is greater than the time remaining In
the frame, the interval timer Is.set with the time remaining In the frame.

Upon completion of the R3 dispatcher In a frame where R1 is to be run, the R1
rate group timer is released and the R1 dispatcher Is Invoked as described
above. Execution of the R1 rate group dispatcher and applications routinesIs
Identical to the R3 execution with the single exception of R1 timer routines
rather than R3 timer routines used for starting and stopping the Interval timer.
Because no rate groups are executed behind R1, there Is no need #o hold or
release other timers.

1.2.3. Execution Order

Each resident process within the triad has a process state descriptor (PSD)
resident In the cache memory which contains a pointer to the location of the PSD
for a succeeding task, In this manner, a number of tasks can be arranged to

11

OISP^_

OF POORQUAL.nPY

I _

EXECUTE I

YES

NO

STOP.R4.T|NER HANDLER

YES

12

Figure 1.4. R4 task Invocation and procedure control

DISPATDHE.R

PR_

;i

START R3 OR

RI TIMER

J
EXECUTE

STOP R3 OR R1
TIMER

YES

YES

ORIGINAL PAG;E 19

OF POOR QUALITY

RELEASE R1

TIMERIDLE "L

1I

TINER. INTERRUPT.

HANDLER

R4

FIGURE 1.5. R.5 and RI Task

13

Invocation Procedure Control Flow

execute in consecutive order. Changes to this order are implemented by the
PEND and ACTIVATE routines as depicted in figure 1.6 (adopted from a CSDL

briefing chart). Process X is currently being executed by the triad, and is
designated as the active process. A PEND(A) command will cause process A to
be inserted in the task execution order as shown in the second column in
figure 1.6. The ACTIVATE(B) command will immediately transfer control to the
process B as shown in the third column of figure 1.6; the previously active
process continues at the conclusion of process B.

The response to interrupts is depicted in figure 1.7, adopted from a CSDL

briefing chart. Prior to the interrupt, a process denoted as Z is active in

the triad, as shown by the "AP" marker. After the interrupt occurs, the

address of the process Z PSD is saved in a location of the interrupting

process PSD, and the interrupting process becomes active. At the conclusion

of the interruption, a RESUME command is executed, and the PSD of process Z

becomes active once again.

14

ORIGINAL PAGE FJ

OF POOR QUALITY

[._
,,<
:>

.i,-4

:.j
<_

,<

r._
P-,

1__

ILl

t#3 ¢/_
(/) ¢/_

{1.

bJ Z

>

,w

>

C

m
'10

I0
"s-

@
4-
gO

4-
(J

'10
e-
¢0

_O
e,-

IaJ

IJ.

15

6_

Z
L-'

N

LUg-
O:D

OC_O
n" U.I

q

I
J
:3(_0 I
•," t.O I
Y'UJ

--tL I

N

, t.LI _

Q

¢o_ -"J

Z

_ vm

Z

I'-

_LU

v

_J
0

_J
_J

v

N

_J
_J
O

T--T

''4
"J

r'J

t0

la

I i

;>

_J
tO

t_

iJ
O

O)
r--

"O
C
e0

"r

"4--

!,-
i,.

4--
C

ILl

b.

¢/)
t.S.I {.r_

16

1.3. COVERAGE OF THE PRIMARY ROUTINE FAILURES

The conception and the design of the acceptance tests are based on the potentlal
fallures derived from the descrlptlon of the dispatcher and associated routines
contained In section 1.2. It was found that fault trees aided the systematlzlng
and documentation of the acceptance test development, and therefore, these trees
are presented In this section.

Figure 1.8 Is the top-level fault tree which shows that failure of any of the
five functions associated with all rate group dispatchers (l.e. the five
functions of the R4 dispatcher and the task dlspatchlng function of the R3.R1
dispatcher) will result In a failure of the entire dispatcher. Failures of the
first three fault categories are expanded in subsequent diagrams referred to In
the triangles under the event Identifications. Failures In reconflguratlon and
I/0 were not covered In this work. The numbers glven In the circles below these
events refer to speclflc section numbers where the relevant acceptance test Is
described.

The reader should note that any input to an "OR" gate causes its output to be
true. Thus, in order for an output fault given at the top of an OR gate to be

detected, all inputs must be detected. However, in the case of an "AND" gate,

all inputs must be true in order for the output to be true, and thus, only a

single fault need be detected in order to assure coverage.

Initialization Faults

A further development of initialization failures is contained in figure 1.9.

Two initialization failures would result in dispatcher error conditions:

failure to set the triad as R4 Responsible and failure to properly initialize

the rate group control blocks.

Because other functions listed In section 1.2.1 under frame count Initialization
do not necessarily lead to critical failures, the are not considered explicltly.
In a portion of the possible range, lnltlallzatlon failures will result In
degraded performance which Is not sufficiently critical to cause the function to
be disabled, and hence, does not warrrant Invocation of the alternate dispatcher
(which Itself provides degraded performance relative to the fully functional
primary). The following functions were deemed to be In thls category under some
conditions In restart Inltlallzation:

resetting of error latches, triad busy states, and triad statuses
Inltlallzatlon of the timer

lower rate groups set to be executed In later frames
reconfiguratlon states are set to 0
UNLOCK and IPC Interrupts are set to 0

Other possible Initialization errors could result in conditions more serious
than degraded performance. For example, If all triads are set to busy and are
unable to restart the R4 processor, then there will be no R4 responsible triad.
The ultimate result of these errors Is the Improper execution of the rate group
dlspatchers, a condition whlch Is covered by acceptance tests, and hence, no

t7

L_J

m

_J

)I.
Lll
n,

UJ

z

L

t-
U

Q

r_

LA.

li

L

4--
m
-t

..J

0

h

18

additional provisions are necessary.

Execution Order__F_I_[ltF__

This failure class Includes errors In frame Inltletlon which causes lower rate
group dispatchers not to be Invoked at appropriate Intervals and errors In task
selection and execution which result In failure to dispatch all applications
routines of a given rate group.

Figure 1.10 shows the further development of possible failures In this category.
Appllcatlons tasks could either be omitted_ or they could be executed too
frequently. Omissions of crltlcaJ tasks are detected by the functional
acceptance tests of section 2, and the setting of variables which result In too
frequent executions of tasks are covered by the struclural acceptance tests of
section 3.

Timing Failures

Failures of the functlons described In section 1.2.2 are Included In this
category. The most apparent source of failures Is the hardware clock, which is
adequately covered by quadruple redundancy, hardware voting, and spares, and
which need not be protected by additional software provisions.

A second cause of failures is the R4 rate group being "stuck", a condition which

occurs under the three circumstances shown in figure 1.11. The first circum-

stance, being stuck in an R4 applications routine is handled by the interval

timer acceptance test described in section 2. The second, R4 stuck in task

selection group and the third uninterruptible ASM sequence, are covered by a

single acceptance test described in section 3.

I/0 and Retirement Failures

Because the I/0 protocols were not described In detail In ref. 4, It was not
possible to devise a set of acceptance tests to provide deflnltlve coverage.
However, the relatively powerful "wrap around" acceptance test described In
section 2.5 will aid In coverlng this fallure, and based on final design of the
I/0 procedures, can be Incorporated with supporting structural acceptance tests
to provlde complete coverage.

The reconflguratlon strategies have been developed and documented elsewhere, and
do not fall under the scope of the dispatcher. However, once the retirement
command Is given, the dispatcher is responsible for carrying it out. Section
3.6 describes the retirement acceptance test.

Possible Failures Introduced by Recovery Blocks

Figure 1.12 is a fault tree showing the possible failures Introduced by the
recovery block structure for the dispatcher. As Is shown, failures can be due
to a primary routine failure coupled with a fault In either the acceptance test
or the alternate routine as well as a type II error (i.e. false Indication of
failure) by the acceptance test and failure of the alternate routine. Coverage
of acceptance test failures is handled by both the critical word reset
acceptance test, which ensures that a proper critical word mask Is used by the
dispatcher acceptance test_ and the frame count acceptance testp which ensures

19

Z
,0

'1o-

OR:_AL r_C ,_'
OF PoOR QU,K_,TY

I ,.

-J

m

2O

I
!

0,!'" .j _
o ,
E,_,

_,,,,,, ""---_I

I

I
" I

L.

Z_
m

D

B

O

a

w >-

8

_E

!

I
I
i

,1

r -7

!

!

!

i

L
_7

|

r-

O

4-

N
m

m

'4-

=.

o¢
laJ

uJ

ORIGINAL PAGE iSl

OF POOR QUALITY

UJ_
1; X'O "

WW

, _u..

"4

I:>

,<
I,--

i

2] ',

!

I

t
L

C,
p,,.

taJ

,C,

e,,,-

,/,.,,

F,
O,..
m

Iv
O
p,.

Z

OIL

-- O

I-- C¢

z

00.

=c

!°t_J

t

in

L

cO
h

L.

L.

O

r'-

O

-I.-
"-!

u

X
.iLl

d

ne

.J

u.

ORI_NAL P&G_ _
OF pOOR QUALITY

O
I--

We,,
e."w

I-.-
¢:IZ
Z--

n-

w_j

tO

T
I

f_.. o

d II I

_- _|

22

0
I.-

_o

r_" Ll.I --

_ i

i

z

- " --._2

!

I_ .-.
I "='O

i

J

w p

w_

w

©

©

©

L.

I-"

2_

LM

I-- -J

w
,,-,,

ORIGINAL PAGE ;_
OF POOR QUALITy

i,i
t--

'" .=,

,(

t,i
h--

_,.<
,<

I-.-
u'J rj
u.I i,i
I-. I--

i,i
C3

I-.

<: .J

0 I--
I-- t.IJ

¢/1

U'l
./.J

IJ..

v
0
0

m--

0

_d

or-

i,

23

I •

q

that the dlspatcber uses the proper frame when tostlng for _he execution of the
R1 and R3 rate groups.

i

1.4. SOFTY,rARE ERRORS NOT COVERED BY THE DISPATCHER ACCEPTANCE TESTS

The scope of both the functional and structural acceptance tests has been
limited to the failures of the dispatcher and supporting routines. AED

procedures not covered by the accepted tests include LOCK/UNLOCK, IPC.INTERRUPT,
and the reconfiguration tasks.

24

,0

! .

SECTION 2 -_F_

(

As noted In section 1.1, functional acceptance tests are those which test the
' t =output of a software module for the achievement of a functional obJec lye Such

tests have been developed for the dispatcher, routines setting _he Interval
timer, and functions associated with I/0 .

.
The dispatcher acceptance test checks memory locations In which critical tasks
from each rate group have set bits In the course of their execution. If the
words Indicate that all crltfcal tasks In the given frame have been run, the
dlspatcher acceptance test resets the critical words for the next frame. Two
additional routines that are assoclated with this acceptance test check both the
Input frame count and the output reset crltlcal words. Details of the dlsptcher
acceptance test are described In section 2.1.

The Interval timer acceptance test checks the Interval timer after the executlon

of any routlne whlch can affect the tlmer value. If the tlme Is less than that

of the current frame, a normal exit occurs. Details of the Interval tlmer

acceptance test are described In secflon 2.1.

The II0 acceptance test checks an Independent counter showing the number of
times the buffer has been accessed and compares it wlth the frame count.

Wlfhout a detailed knowledge of the final I/0 protocols used for the FTMP, if
can not be concluded that this acceptance test provldes a deflnlflve
determlnatlon of normal execution, but It is antlclpated that it wlll be useful,
especially If combined with addltlonal specific structural acceptance tests.
Details of the I/0 acceptance test are descrlbed In section 2.1.

Finally, although not defined speclflcally, each crltlcal applications routlne
wlll have Its own functional acceptance test whlch checks the vailldity of Its

Input and output. Tests for determlnlng whether constralnts have been me+ for

the runnlng of applications routines is also part of the function of these

acceptance tests.

.Ii

25

I.-,,

.<=

e_

.I
oC
w
,},-

I--

_ t.m.I
::E I..-
,-,-Z
I-- ,--"

I.

o_

:=. _C

W I_, k--

!

I

ORIGINAL PAGE 'FJ

OF POOR QUALIT'tf

U_

I--

(D
U
C

4--
r_L

Q)

U

U

_C

L

U

C

IU

-I-.-
E3_

:3

L

I-

-I-

e--

L.

E

F-"

O

U
r-

Q)

E3r"

(%1

ILl

O

i

(

26

2.1 . DISPATCHER ACCEPTANCE TESTS

• ' ORIGINAL PAGE f8

'.OF POOR QUALITY

As noted above, the overall dispatcher acceptance test scheme consists of

checking tlle values of crltlcal words which Indlcate that ta_ks cruclal to

malntalnlng stable flight conditions have been run In each rate group. However,

because the crltical task 9roup varies as a function of the frame CounT, a

second test must ensure that the dispatcher uses a proper value for th!s

variable. Finally, tile crltlcal words must be reset at the beglnnlng of. every

frame; the successful execution of thls functlon Ps verlfled by a third
acceptance test. Thus,, a tot_l of three modules for the acceptance tests
assoclated wlth the dlspatcher have been developed:

Te_zL_fLQr__JS___Lure_9_L_:Lb_e_]_]_s_a_:L_J1___The overall functional tests for _he

dispatcher l_.'to determlne whether all critical tasks wlthln a given rate

group have b_n executed at the appropriate times. Failures of a humber
of functlons are detected by thls test. Thls lest Is further descrlbed in

sectlon _.I.
j'

2e___f_eF_F_a]]__o___tih_e_Er_JlLe__C_ZILer__ Failure of the frame counter can

result In the Improper #1mlng for execution of lower rate groups. If the

counter Is not Incremented or Is Incremented by greater than one, It Is

possible that lower rate groups wlll not execute at all. The test for

proper Incremen÷Ing of the frame counter Is descrlbed In section 2.1.2.

1?__]i___]_]_D_d_Re__e_t__A_j__t__1_%t. Fallure to reset the crltlcal word

can result In Improper assessment of whether the rate groups have been

completed. At the concluslon of the dlspatcher acceptance test, the
critical word Is compared with Its Initial value stored In m_nory. If

these values do not agree, then the alternate scheduler-dlspatcher Is
Invoked. Thls test Is further described in sec_lon 2.1.3.

The polnt In the frame at which these tests are executed Is shown In flgure 2.1.

After the R4.RESPONSIBLE triad receives an Interrupt signaling the beginnlng of

a new frame, the acceptance tests are Invoked, and the R4 dispatcher Is
restarted.

2.1.1. Dispatcher Crltlcal Word Acceptance Test

The speclflcatlon of the dispatcher requires that all R4 tasks wlll be completed

every frame, all R3 tasks every second frame, and all RI tasks every elghth
frame. The acceptance test wlll rely on the existing clock and frame count to

verlfy that thls functional requlrement is met. However, an Independent

acceptance test will verify the frame count by means of two Independent counters

(see sec. 2.1.2). The acceptance test will check a critical word for the

appropriate rate group. If this word Indicates that all tasks have been

completed (by being set to all 1's), then It wlll resel the word (In a manner

that will also be fault-tolerant, see sac. 2.1.3) and proceed to lest the next

lower rate group as appropriate. If a discrepancy In the critical word Is
detected, the acceptance test will Invoke the alternate dlspaicher.

27

I

Figure 2.2 shows the dispatcher and accompanying fault tolerant provisions

(this configuration is the same for all rate groups) invoked at the beginning
of a new frame. If the dispatcher acceptance test Is satPsfactory,.the primary

dispatcher Is re-executed as shown In the left-hand branch of f!gure 2.2, and If

not, the alternate dispatcher Is executed. Crltlcal appllcatlons routines will
m

set appropriate bits In the crltlcal word for that rate group.

Figure 2.3 Is the Nassl-Schneideman dlagram of the dispatcher acceptance test

and table 2.1 shows the requlrements. As each rate group critical word, Is

tested, It Is reset, and the reset function In turn Is tested (setlon 2.1.3).

If any rate group crltlcal word Is not satlsfactory, the alternate dlspatcher Is
Invoked.

2.1.2. Frame Count Acceptance Test Requirements

The frame count acceptance test Independently verlfles that the frame counter

has been properly Incremented. It Is Invoked prior to execution of the

dlspatcher as shown In figure 2.1. Figure 2.4 Is an Nassl-Schneldeman dlagram
for thls acceptance test. As shown In flgure 2.5, two Independent frame

counters, NEW.FRAME and OLD.FRAME (each counting from 0 to 15) In thls

acceptance test are used to ensure that proper Incrementlng has been carrled out

wlthln the test. A comparlson Is then made wlth the dlspatcher frame countlng
variable FRAME.COUNT. If a dlscrepancy Is found, all frame counts are restarted

at 0 without the need for the alternate scheduler-dlspatcher. However, If a

dlscrepancy perslsts for an arbitrary number of consecutive tlmes (we have
chosen three consecutlve times), then the acceptance test Invokes the alternate

scheduler-dispatcher. The requirements for the frame count acceptance test are

given In table 2.2

2.1.3. The Word Reset Acceptance Test

If the critical words are not properly reset, the dispatcher crltlcal word

acceptance test may fall to detect that the dispatcher has not Invoked all

appllcatlons tasks. Most llkely, the fallure of the crltlcal word reset wlll
result In the final word (at the end of the frame) Indlcatlng that all crltlcal

tasks have not been completed when they all have actually been run. However,

there Is also the posslbllIty that the crltlcal word Is not properly reset and

that the tasks are notcompletely executed. The dispatcher crltlcal word

acceptance test will then Indlcated proper completion even though thls has not

been achieved.

The requirements proposed for the word reset acceptance test are glven In table

2.3, and figure 2.6 shows the Nassl-Schneldeman dlagr_m.

28

TABLE 2. !.
!

Dispatcher CriticalWord Acceptance Test Requirements

1

1. The dispatcher critical word acceptance Cest checks rate group critical
words at the beginnings of the appropriate frames after the frame count

has been verified by an Independent acceptance test. ' :

ao The R4 critical word Is checked at the beginning of every frame;.

b. The I{3 crltlcal word Is-checked at the beginning of even frames
I

(l.e. O, 2, 4, 6, 8, I0, 12, and 14).

c. The RI critical word Is checked at the beginning of frame 0 and 8.

2. If the rate group crltlcal word Is correct, the dlspatcher acceptance test
wlll reset It. A separate acceptance test verlfles Its re-lnltlallzalon

3. If the rate group critical word Is not correct, the dispatcher acceptance
test wlll Invoke the alternate scheduler/dlspatcher.

i

i I

29

b "

I
|

¢
!

!

I

DI['SPATCHF..R ACCEPTANCE TEST OK? _ : "

o.

.1

EXECUTE PRIMARY DT(;PATCHER

EXECUTE APPLICATIONS TASK (TYPICAL.)

!

YEs_SK ACCEPTANCE T_

|I0

CO TO ALTERNATE TASK OR SET SKIP

FLAG

SET BIT IN CRITICAL WORD

DO UNTIL TASK LIST IS FIHISHED

ENTER

ALTERNATE

DISPATCHER

(FIG. 6)

FIGURE 2.2.

-.II

Fault Tolerant Provisions for the FTMP Dispatcher

30

READ R4 CRITICAL WORD

tl,

!

OF POOR QUALITY

R4 CRITICAL WORD OK?

YES

RESET R4 CRITICAL W'ORD

INVOKE CRITICAL wORD RESET ACCEPTANCE TEST

ODD FRR4E?

"I

I READ R3 CRITICAL WORD

R3 CRITICAL WORD OK?

YES

RESET R3 CRITICAL WORD

INVOKE CRITICAL WORD
RESET ACCEPTANCE TEST

r

FRAME.COUNT MOD 8 # O?

NO

READ R1 CRITICAL WORD

R1 CR IT I CAL WORD OK?

YES _.__._

RESET R1
CRITICAL WORD

INVOKE GRIT.

WORD RESET

ACC. TEST

,%

q

NO

n .,

INVOKE ALTERNATE

DISPATCHER

FIGURE 2.3.

!

Dispatcher Critical Word Acceptance Test Module

31

|

TABLE 2.2. Frame Coun_ Acceptance Test Requirements

1. The frame count acceptance test will be Invoked every fram_ as an R4
critical applications routine.

a. The frame count acceptance test will set a bit In the R4 crltlcal word.

I). The dispatcher critlcal word acceptance test will check the R4 critical
word to verify that this acceptance test has been run in the previous
frame.

.

.

The frame count acceptance test will Increment Its own Independent frame
counter, and then ensure that it has been properly Incremented.

a. The acceptance test frame counter, NEW.FRAME, will be Incremented In the
range 0 to 15 (by using NEW.FRAME modulo 16).

b. The difference between NEW.FRAME and a second acceptance test counter,
OLD.FRAME will be checked.

If the difference Is 1, then OLD.FRAME Is set equal to NEW.FRAME
(I.e. NEW.FRAME Is properly Incremented)

i

If the difference Is not equal to 1, the NEW.FRAME, OLD.FRAME,
and FRAME.COUNT (the primary dlspatcher freme counter) are set
to 15 so that tasks for all three rate groups wlll be executed
In the subsequent frame. An error counter, FRAME.FAIL.COUNTER,
Is Incremented and checked to see that It has not reached a prese+
limit (3 is chosen at present). If FRAME.FAIL.COUNTER has
exceeded the limit, then the alternate scheduler-dispatcher
Is called. If it has nott then the primary dispatcher Is
Invoked at the new frame count.

. I

a.

b.

If the acceptance test frame counter has been properly Incremented, It
Is compared to the primary frame counter.

If the acceptance test frame counter and _e primary frame counter

agree, FRAME.FAIL.COUNTER Is set to zero and the primary dlspatcher Is
Invoked.

If the primary frame counter and the acceptance test frame counter do
not agree, NEW.FRAME, OLD.FRAME, AND FRAIU_.COUNT are set to 15 so that
all three rate groups will be executed In the subsequent frame.
FRAME.FAIL.COUNTER Is Incremented and checked to see that It has no_

reached a preset Ilmlt (3 Is choen at present). If FRAME.FAIL.COUNTER
has exceed the Ilmlt, then the alternate dispatcher Is called. If It

has not, then the primary dlsptcher Is Invoked at the new frame count.

.32

I

ORIQINAL PAgE _

OF POOR QUALITY

b
(

L ,, , i

I

IIICRFHFNT HEW.FRAMI-" ,
, tIEW,FRAr.IE = NFW.FHAME+I NOD 16

-ME 0LD.F

YES ,

UPDATE OLD.FRAME
OLD.FRAME=NEW.FRAME

FRAME.FAIL:O

ENTER

NEW. FRAME=I 5
OLD .FRAME=15

FRAME. COUNT=I 5

INCREMENT FRAME.FAIL

yes _

DISPATCHER ENTER" ALTERNATE
DISPATCHER

J _ i| . , L" . J

J

FIGURE 2.4. Frame Count Acceptance Tdst Module

33

TABLE 2.3. Critical Word Reset Acceptance Test Requirements

I. The critical word reset test Is called by the dispatcher acceptance
test,

2, The memory I ocation containing the rate group critical word which has
Just been reset is compared with the memory Iocatlon containing the
lnltlal value to which the word should have been changed.

3. If these values agree, normal execution of the primary dispatcher Is
continued.

4. If these values do not agree, then the alternate dispatcher Is Invoked.

34

35

o

8

o

I-

8

&

i

35

2.2. INTERVAL TIMER ACCEPTANCE TEST

The interval timer Is the cruclal syste_ component whlch ensures that Interrupts
occur at the proper Interval. A total of ten AED procedures control and arm the
Interval timer:

HOLD. R3 ,R1 ,TIMERS
HOLD. R1 .T I MERS
RELEASE. R3 ,R1 ,TIMERS
RELEASE.R1 .T I HER
START. R4. T I MER
START. R_ .T I HER
START,R1 ,TIMER
STOP. R4. T i MER
STOP, R3,TI MER
STOP. R1 .TIMER

Each of these procedures must determine the time to the next Interrupt, the type
of interrupt, load the Interval timer reglster with the appropriate value, and
arm it. Fallure to load, arm, or properly Identify the next Interrupt will not
be detected by any of the previously defined acceptance tests.

A means of detecting these failures Is therefore Included as an addltlonal
functlonal acceptance test. This test, designated as the Interval Timer
Acceptance Test, ensures that the value In the Interval timer of the R4
responsible triad Is less than the value to the next R4 frame as defined by the
dlfference between R4.TICK.TIME and TIME,NOW. If the Interval is greater than
the difference, or If TIME.NOW is greater the R4.TICK.TIME, then a functional
error has occurred In one of the t|r_r routines, and the alternate dlspatcher is
Invoked. Table 2.4 Ilsts the requirements for the Interval Timer Acceptance
test, and figure 2.7 Is the Nassl-Schneldeman diagram for this procedure.

The reader should note that this test will not affect the values of non-R4

responsible timers, These Intervals continue to extend beyond the next R4
frame, and can not be used as back-ups to ensure the timely start of the R4
frame.

i

Although the acceptance test does not check for the occurrence of the
appropriate Interrupt or that R4.TICK.TIME has been set to a new value
explicitly, It does so implicitly through the condltlon Identified in 4b of
table 2.4. If an Interrupt other than that for a new frame has been set at the
R4 Interrupt time, then the acceptance test will detect the failure by notlng
that the R4.RESPONSIBLE flag ls still set (and hence, that no triads are working
on the R4 rate groups). Thls same check can be used to ensure that a new
R4.TICK.TIME value has been entered. If the difference between R4.TICK.TIME and

TIHEoNOW at the end of the R4 task execution cycle Is less than zero (i.e. was
not reset in the R4 Dlspatcher), then the failure Is also detected.

37

TABLE 2.4 REQUIRENENTS FOR THE INTERVAL TIER ACCEPTANCE TEST

•

e

•

•

The Interval Timer Acceptance Test shall be Invoked after each of the
following routines Is called=

HOLD.I:_.R1.TIMERS
HOLD.R1.TIIVERS
RELEASE,I:_,Ri,TINERS
RELEASEoRloTINER
START,R4oTINER
START, R.:_,TINER
STARToR1,TIBER
STOPoR4oTINER
STOP•I_•TINER
STOPoR1,TIHER

if the triad Is not R4.RESPONSIBLE, and the R4 dispatcher Is not active,
the acceptance test will return control to the calling routine.

If the R4 dispatcher Is actlve_ the acceptance fast will compare the
value of the Interval time with the maximum pennlssible R4 Ilmlto If
the value of the limit ls exceeded_ the acceptance test will Invoke
the alternate dispatcher.

If the triad is R4.RESPONSIBLE, the acceptance test will Invoke the
alternate dispatcher If either of the following conditions Is met=

=

a. R4.TICK.TIME- TINE.NOW < INTERVAL.TIIHER

b. R4.TiCK•TIME - TIME.NOW < 0

If neither of the conditions of (4) are met, then the acceptance test
will perform a normal exit and return control to the calling routine.

38

39

2,3. iNPUT/OUTPUT ACCEPTANCE TESTS

In addition to the acceptance tests deallng wlth executlon of the dispatcher,
the Input/output routines must also be tested. The test crlterlon Is the number
of +imes that a data buffer is accessed In a given time period, and this Is
compared wlth the frame count approprlately adjusted for even and odd frames as
defined In the requirements shown In table 2.5.

Because the I/0 procedures for the MIL-STD 1553 bus were not within the scope of
this work, no speclflc recommendations wlll be made. However, some general
co_ents on the nature of the test are described here.

The I/0 acceptance tests verify that the dispatcher has invoked the Input/output
routines in the proper sequence, and that the upcoming values whlch are used by
the applications tasks are reasonable relative to those which had been used In
the previous cycle. As currently concelved, the dlspatcher reads In the data
for all rate groups to be executed in a given frame during the R4 frame
Initiation from a buffer location to which data as constantly being transmitted.
The procedures perfoming this task, RX. IN() and RX.OUT(), are executed as part
of the R4 dispatcher.

There are two major acceptance tests: (1) a test invoked by the dispatcher to
determine that the buffers of each of the data group have been accessed at the
appropriate rates (includlng an even/odd test), and (2) a test for the
reasonableness of each data polnt, I.e. that the point varies In a reasonable
way from (e.g. Is It within a certain range of) the previous point.

In order to verify that the data group access counters have been checked, the
I/0 acceptance test must be an R4 critical task (whose execution is noted in the
critical word). The requirements for this acceptance test are given In table
2.5.

4O

TABLE2.5. I/0 ACCEPTANCETESTREQUIREMENTS

The numberof times that a data group has been accessed will be
compared with the frame counts.

a, Data groups associated with R4 tasks will have counters that will
be compared with R.FRAME.(RG4).

If the data group counter equals R.FRAME.(RG4), then the counter
will be Incremented.

If the data group counter Is greater than 15, then the counter
will be reset (to modulo 16) prior to being compared with the
R.FRAME.(RG4) varlable.

If the data group counter does not equal R.FRAIVE.(RG4), the
alternate dispatcher will be called.

be

CO

Data groups associated with I_ tasks will have counters that will
be compared with R.FRAI_E(RG3).

If the data group counter equals R.FRAIVE(RG3), then the counter
wlll be Incremented.

If the data group counter Is greater than 8, then the counter
will be reset (to modulo 8) prior to being compared with
R.FRAIVE(RG_).

If the data group counter does not equal R.FRAIVE(RG3), then the
alternate dlspatcher will be called.

Data groups associated with R1 tasks will have counters that will
be compared with RoFRAIVE(RG1).

If the data group counter equals R.FRAIRE(RG1), then the counter
will be incremented.

If the data group counter Is greater than 2, then the counter will
be reset (to modulo 2) prior to being compared with R.FRAHE(RG1).

If the data group counter does not equal R.FRAIVE(RG1), then the
alternate dispatcher will be called.

• Within each applications task, a data acceptance test will determine
whether the input is reasonable (i.e. is within an acceptable range of
the previous value).

a. If the data Is not reasonable, the alternate appllcations task will be
Invoked

41

e

OR

b. If the data Is not reasonable, then the applications task will use a
backup data modu I e.

(the use of either alternative may be dependent on the specific nature of
each applications task, flight condltionsp and general practicality)

Each rate group will have an acceptance test to ensure that the
appropriate (even or odd) buffer Is being accessed,

4. The I/0 acceptance tests wll'l be R4 critical tasks.

42

2o4° APPLICATIONSROUTINES

It Is assumed that each of the appllcatlons routines wlll have Its own
acceptance test to verify correct execution. However, In addltlon to testing
for the valldlty of outputp these acceptance tests will perform two addltlonal
tests on the operation of the dlspatcher= that constralnts have been met and
that the critical word bit has been set for this routine.

The setting of critical word bits will occur at the beginning of each
applicatlons routlnep and a function of the appllcatlons task acceptance test Is
to ensure the appropriate value of the critical word at the conclusion of task
execution.

Testing for the violation of constraints Is most efflclently handled on the
appllcatlons task level as part of the check for the validity of Input.
However, failure to meet constraints Is a dispatcher fault and should result In
lnvocatlon of the alternate dispatcher If such a fallure has crltlcal
Impllcations. Thus, in the event that constraints have not been met, the
applications routine wlll reset Its bit In the critical word to Indicate that It
has not run. When the dispatcher functional acceptance tests are run, they will
detect failure to execute a crltlcal task, and will Invoke the alternate

d I spatcher.

43

SECTION 3 - STRUCTURAL ACCEPTANCE TESTS

Structural acceptance tests check sections of code to ensure that key varia-

bles have been set and functions have been executed. In section I, the

coverage of these tests is shown to be particularly important. Specific

applications of structural acceptance tests are described for the following
modules or subfunctions of the dispatcher:

SLIp and R.DONE - Because the functional acceptance test requires both
variables as criteria for deciding whether to read the critical word, errors
In these variables as well as errors In the crltical word will not be
covered without assurance of the correctness of these Inputs. Two
acceptance tests described In sectlon 3.1 detect these failures.

STUCKJN R4 FRAME - This condition can lead to the delaying of the next R4
frame lnltlation to such an extent that critlca! tasks will not be executed

at their design rates. Failure to complete the current R4 frame in timely
manner Is detected by the acceptance test described In section 3.2.

KICK - If an R4.RESPONSIBLE triad retires without designatlng another triad
to restart the new frame, then the entire task scheduling and dispatching
function will be lost wlth no lndlcatlon of failure by the acceptance tests,
which will not have been Invoked. An acceptance test verlfylng that KICK
has been successfully executed Is described In section 3.3.

R4.RESPONSIBLE - A related task Is the ensuring that one and only one triad
Is R4.RESPONSIBLE. Failure of the R4.RESPONSIBLE triad to Invoke the new
frame will be detected by the Interval Timer acceptance test described In
section 3.4.

UNINTERRUPTIBLE COOE - Sections of unlnterruptible ASM code In the FTMP
operating system may lead to Infinite loops which would ultimately result in
failure to restart the R4 frame If executed by the R4.RESPONSIBLE triad,
The unlnterruptlble code acceptance test described In section 3.5 covers
this error.

- Failure of a triad to properly respond to a retlre_ent command
can result In a pathological condltlon wlth severe system consequences.
This condltlon will be detected by the retirement acceptance test described
In section 3.6.

44

3.1. ERRORS IN SLIP AND R.DONE

The Dispatcher Acceptance Test will not detect errors In the settlng of SLIP and
R.DONE for lower rate groups. As a result, two structural acceptance tests are
necessary In order to ensure that these varlables are properly set. They must
detect the following failures=

(1) the failure of lower rate groups to complete the Iterations wlthln a
certain time period manifested by exceeding a minimum value on SLIP, l.e.
the most negative value It may assume (which may be altered in the course of
flight), and

(2) the detection of failure of a rate group to be marked as complete as It
flnlshes Its task list.

A third failure, setting RX.DONE to TRUE when the rate group has not completed
execution will be detected by the functlonal acceptance test of the dispatcher.

I

3.1.1. Maximum Absolute Value for SLIP

Thls test, whose requirements and N-S diagram are shown In table 3,1 and figure
3.1, compares SLIP with a Ilmlt set at the maximum tolerable schedule slippage
rate for each flight mode. This limit, designated as MINSLIP, Is asslgned a
value during the dispatcher Inltlallzatlon, and may be altered In the course of
the flight. MINSLIP Is changed by an applications routine which has an
associated acceptance test.

An additional failure, the decrementing of SLIP when the lower rate group has
completed its task list, Is also covered by this test. If thls decrementing Is
more frequent than allowed for by MINSLIP, the alternate dlspatcher will be
Invoked. An Implicit assumption of this scheme Is that the degraded execution
mode resulting from the too frequent execution of lower rate groups Is
preferable to the Invocation of the alternate dispatcher.

3.1.2. RX.DONE not set to TRUE when task list execution completed

This test will compare the first task In the rate group task list, contained In
the the array CONTROL location O, wlth the next task to be executed by the rate
group, contained in CONTROL(I). If these two are the same, It Implies that the
previous Iteration has been completed, and R.DONE for this rate group should be
set to TRUE. If not, the alternate dispatcher Is Invoked. The requirements for
this acceptance test are shown In table).2, and the corresponding N-S diagram
Is shown In figure 3.2.

45

TABLE 3 oI. Requ i rements for the SL I P Acceptance Test

•

Q

0

4.

The SLIP value acceptance test Is Invoked by the R4 dlspatcher at

the beglnnlng of each frame,

The absolute value of SLIP Is compared to Its maximum Ilmlt. If
exceeded, the alternate dispatcher Is Invoked.

If SLIP is greater than zero, the alternate dlspatcher Is Invoked.

The value of MINSLIP is set as part of the initialization section of the

R4 dispatcher. It is altered at the appropriate flight mode changes by a

critical applications routine with an associated acceptance test.

TABLE 3,2. Requirements for the RX.DONE Acceptance Test

•

1

,

The RX.DONE acceptance test Is Invoked by the R4 dispatcher at the

beglnnlng of each frame,

The values of the two elements In the array CONTROL of the lower rate
group PCB'S are compared, The first element Is the polnter to the
first applications routine of the lower rate group, and the second
element Is the pointer to the next task to be executed when the
dlspatcher Is called,

If the value in CONTROL(1) is null, and the RX.DONE variable for that rate

group is FALSE, the alternate dispatcher is invoked.

46

MINSLIP ?

__- NO
I

ALTERNATE DISPATCHER I NIL
INVOKE

I

FIGURE 3ol. SLIP Acceptance Test

.CONTROL(I):NULL AND R.DONE:FALSE " OR

, _,_ROL (O)=?RX.CONTRO_._

YES __ No
I

INVOKE ALTERNATE DISPATCHER I NIL

I

FIGURE 3.2. R.DONE Acceptance Test

47

3.2. STUCK IN R4 ACCEPTANCE TEST

Acceptance tests described In this section and In sectlon 2 serve to ensure that
the R4 dispatcher will be re-entered at the start of a new frame under all
circumstances. However, If the R4 tasks are belng dispatched late or some other
dlsorder exlsts wlthln the R4 dispatcher, then no error condltion will be
detected. The purpose of the STUCK IN R4 acceptance test is to ensure that If
there Is a delay In the dlspatchlng of the R4 tasks, the delay Is within some
previously defined acceptable Ilmits.

Requirements for the test are shown in table 3.3, and figure 3.3 is the

corresponding N-S diagram. The test uses an applications routine selection

counter, R4.APP.COUNTER, which Is Initialized at the beglnnlng of each R4 frame
and Is Incremented Immediately after the successful selectlon of an R4
applications task. The expected completion tlme for the R4 frame Is determined
by the difference between TIME.NOW and R4.TICK.TIME, the time at which the
present R4 frame was started. If this difference Is greater than R4.PERIOD,
then R4.APP.COUNTER Is compared to a limit denoted as R4.LATE.LIH, which Is the
mlnlmum number of tasks expected to be executed by the end of the frame. If
R4.APP.COUNTER Is less than R4.LATE.LIM, the alternate dispatcher Is Invoked.

R4.LATE.LIM can be dynamically changed during subsequent cycles of the R4 task
selection and dispatching by means of a linear (or other function) In order to
ensure that satisfactory progress is made on completion of the R4 Iteration
after the expected completlon time. The merits of monitoring progress must be
weighed against the disadvantages In Invoking the alternate dlspatcher when the
situation Is not sufficiently critlcal to warrant such action.

48

Table 3.3, Requirements for the STUCK IN R4 acceptance test

I. The STUCK IN R4 acceptance test will be Invoked after the executlon of

procedure SELECT,TASK.

o An R4 appllcatlons routine counter, R4.APP.COUNTER, will be Initialized
at the start of each R4 frame. After the successful selection of a task,
R4.APP.COUNTER will be Incremented.

o If a task has been successfully selected, the acceptance test will check
the difference between the current time, TIME.NOW, and the time since the

R4 dispatcher was re-started (R4.TICK.TIHE).

a. If this difference Is less than R4.PERIOD, the acceptance test will
exit without further executable statements.

b. If this difference ls greater than R4.PERIOD, R4.APP.COUNTER will be
compared with R4.LATE.LIM. If R4oAPP.COUNTER is less than R4.LATE°LIM,
the alternate dispatcher will be Invoked.

4. R4.LATE.LIM may be changed dynamically if monitoring the progress of the
applications task following the expected end of the frame Is critical.

49

i D
-__ TIME.NOW- R4.TICK.TIME > R4.PERIOD AND_

,,.,,.,:,P.cou,,,r< ,.,_._
Y,S -----........._/ ,o

! I 1

F I GURE 5.3. STUCK, IN,R4 Acceptance Test

_D.B'USY(RG4) <- VALUE OF CALLING

YES _ NO

INVOKE ALTERNATE DISPATCHER i NIL . ,

FIGURE 2.4. KICK Acceptance Test

50

3°3° KICK ACCEPTANCE TEST AND MODIFICATIONS TO KICK PROCEDURES

The AED procedure KICK performs two functlons In the R4 dispatcher= (1) to
restart the R4 rate group In other triads once the R4°RESPONSIBLE triad has
performed the requlsite Intlallzatlons, and (2) to transfer the R4 rate group to
another triad In order to ensure that it becomes R4 responsible should the first
triad be ordered to retire°

The first, function Is not deemed to be crltical; If the R4 dlspatcher does not
successfully awake up" the other triads, the event Itself will not always cause
a fatal system failure. On the other hand, the failure of the second function
will result In there being no R4 responsible triad, and no other Indication of
the failure with the result that there will be no response to the start of a new
R4 fr_ne,

In the design of the KICK routine as described In Ref. 4, the "klcklng a triad
searches for another ellglble triad to which to transfer the R4 dispatcher, if
none Is found, a normal exit occurs, but the dispatcher is not transferred.
This deslgn Is adequate for the first purpose described above, but not for
transfer of the dispatcher prior to retirement. It is therefore necessary to
construct a second procedure whlch wlll Invoke the alternate dispatcher If no
other triads are available for the R4 dispatcher°

This second procedure, designated as KICK2, is identical to the original design

of KICK with a single exception, the addition of an AED statement at the end of

the procedure. This statement will cause control of the triad to be passed to
the alternate dispatcher should there be no other triads available for taking

the restart responsibility. Such a statement is not desirable for the transfer

of the R4 dispatcher as part of the normal triad execution. The reader should

note that this statement will be executed only under the following conditions:

(1) the last triad executing the R4 dispatcher receives a RETIRE command
from the configuration controller, and

(2) no other triad will receive the R4 dispatcher in order to set its own
R4.RESPONSIBLE bit.

In addition to the fault-tolerance measure noted above, KICK2 requires an
acceptance test in order to ensure that control is indeed transferred to another

triad in the event of retirement. The requirements for the acceptance test are
shown in table 3.4, and the N-S diagram is shown in figure 3.4. As noted in

table 3.4, the acceptance test is executed immediately after the completion of
KICK. If the value in TRIAD.BUSY(RG4) is less than or equal to the value of the

triad which has just executed KICK, then no other triad will respond to the IPC
interrupt to take the R4 dispatcher. Under such circumstances, the R4 rate

group will: be restarted when the next R4.TICK.TIME is reached, and invocation of
the alternate dispatcher is necessary.

51

Table 3.4. Requ[renents for the KICK Acceptance Tes¢

•

o

o

The KICK acceptance test wlll be executed Immedlately after the KICK

of the R4 dlspatcher as a result of retlrment occurs.

The acceptance test wlll read TRiAD.BUSY(RG4), and compare It to the
value of TRIAD. ID of the calling triad. If the value of TRIAD.BUSY(RG4)
Is less or equal to TRIAD.ID, then the alternate dispatcher will occur.

Thls acceptance test will not be executed when KICK Is used to transfer
the R4 dlspatcher to another triad under other circumstances.

3,4, R4 oRESPONSI BLE ACCEPTANCE TEST

The purpose of thls acceptance test Is to ensure that the R4oRESPONSIBLE flag
has been set In at least one triad before the concluslon of the execution of the

R4 dispatcher. The N-S diagram and procedure requlrements are glven In figure
3.5 and table 3.5 respectively. The test first ensures that the value of
TRIAD.COUNTER, the variable used to determine what triad will be responsible for
starting the next frame, is within the expected range (0 to 2). If no other

triads are executing the R4 dispatcher, this procedure checks that both
R4.RESPONSIBLE is TRUE and that the difference between the current time

(TIME.NOW) and the time to the beginning of the next frame (R4.TICK.TIME) is no
more than the R4 frame_ length (R4.PERIOD),

If another processor triad Is still executing the R4 dispatcher, then two or
more triads would be R4.RESPONSIBLE, a condition which could result In a number
of adverse consequences upon the restar¢ of the R4 dispatcher. It Is for this
reason that this acceptance test will Invoke the alternate dispatcher If
TRIAD.COUNTER is not zero when R4.RESPONSIBLE is TRUE.

53

Table 3.5, Requirements for the R4.RESPONSIBLE Acceptance Test

•

o

The test Is Invoked by the R4 dispatcher Immediately before the RESUME(O)
statement.

The test will Invoke the alternate dispatcher If any of the following
conditions are met:

(a) TRIAD.COUNTER < 0 or TRIAD.COUNTER > 2

(b) TRIAD.COUNTER = 0 AND R4.RESPONSIBLE = FALSE

(c) R4.TIME.TlCt<: - TIME.NOW > R4.PERIOD

(d) TRIAD.COUNTER >= 1 AND R4,RESPONSIBLE = TRUE

54

0
z

c_
v

tX

7

0

_. o

0

.J

z

LAJ

Z

LAJ

_ "I"

'" I--"

_ CJ_
Z _
m t-_

-7
n_

_Jv

.J

z

Wzl--

4-

0
U
t-
_O

,J,
_D
(J

ul
OC_
m

n,,

LLI
Iv"

Cg

LL

55

3.5. UNINTERRUPTIBLE CODE ACCEPTANCE TEST

Appendix B lists the series of assembly language routines which are called by
the dispatcher or associated routines and which have sections of uninterruptible
code. As Is shown In table B-2, slx of these routines have conditional branches
or loops within them, and the possibility of an Infinite loop due to a software
logic, environment, or execution error exlsts. If the R4.RESPONSIBLE triad Is
invovled, the R4 Interrupt will not be acted upon.

The remainder of the system can be in one of six configurations under this
condition:

1. Two other triads idling.

2. Two other triads working on other applications routines.

3. One other triad working, one retired.

4. One other triad idling, one retired.

5. Both triads retired.

6. One triad working and one idle.

With the exception of 5, these configurations may be grouped Into the following
(non-mutually excluslve) categories=

(I) At least one triad working.

(11) At least one triad In the Idle process

The two acceptance tests described below are to be run under the applicable
conditions.

3.5.1. At least one triad working

If at feast one other triad Is performing a task, It will eventually be
Interrupted or will go to an Idle state. If the triad receives a tlmer
Interrupt, control will pass to the timer Interrupt handler. The acceptance
test whose requirements are described In table 3.6 and depicted In the N-S
diagram of figure 3.6 Is appended at the end of the tlmer Interrupt handler, and
wlll evaluate whether the R4 dispatcher should be restarted. If not, this triad
Invokes the alternate dlspatcher.

There are two conditions which will cause Invocation of the alternate dispatcher
under these conditions=

(a) if there Is still an R4.RESPONSIBLE triad (i.e. the R4 dispatcher has
not been restarted) at the expected restart time plus an allowance DELTA_
then the alternate dispatcher will be Invoked;

(b) if there are no triads running the R4 dispatcher beyond the allowed
tlme, the alternate dlspatcher wlll be Invoked.

56

3.5.2 At I east one tr lad I n the I dl e process.

All trlads In the Idle mode will subtract the current time (TIME.NOW) from the

time to the new R4 frame (R4.TICK.TIHE). If the difference exceeds the expected
time for the R4 dispatcher to Invoke the KICK routine to start up other triads
(denoted as DELTA.KICK) and other triads are available for running the R4
dispatcher, the Idling triad will Invoke the alternate dispatcher.

The Idle mode acceptance test provides coverage for the fol Iowlng two situations
(1) when the R4 dispatcher Is stuck in an unlnterruptlble lnflnite loop after
resiarting the current frame or (2) when the last triad lear!rig the R4
dispatcher is stuck prior #o deslgnatlng Itself as R4.RESPONSIBLE. The reader
should note that the STUCK IN R4 acceptance test provld3s coverage In the event
that the dispatcher Is unduly delayed, but not under this condition.

57

TABLE 3,6. Requlrenents for the Unlnterruptlble Code Acceptance Test -
At Least One Trlad Is Worklng

o

.

_o

The Unlnterruptlble Code acceptance test will be Invoked at the
beginning of the TIHER. INTERRUPToHANDLER routine.

A constant DELTA defined as expected time to enter the R4 dispatcher
and set R4.RESPONSIBLE to FALSE will be defined during system
Inltlallzation.

The test will read R4.TICK.TIME and TIME.NOW. If TIRE.NOW -
(R4.TICK.TilVE + DELTA) is less than or equal to zero, a normal return
wlll be effected.

If TIldE.NOW - (R4.TICK.TIME + DELTA) Is greater than zero and the triad
Is R4.RESPONSIBLE, the test will determine the contents of the APSD.

a, If the APSD = R4.PSD, a normal return will occur.

b. If the APSD Is any other quantity, the alternate dispatcher
will be Invoked,

IF TIME.NOW - (R4.TICK.TIME + DELTA) Is greater than zero and the triad is
not R4.RESPONSIBLE, the test will check the TRIAD.COUNTER (I.e. the
number of trlads executin 9 the R4 dlspatcher).

a. The triad will determine whether any other triad ls R4.RESPONSIBLE.
If no other triad Is R4.RESPONSIBLE and the TRIAD.COUNTER Is greater
than or equal to It then a normal exlt will occur,

b. If another triad Is designated as R4.RESPONSIBLE beyond this time
Ilmlt, the alternate dispatcher will be Invoked.

c. If the TRIAD.COUNTER is zero, the alternate dispatcher will be Invoked.

58

,\

\

W

/

: /

/

/

._1

Z

59

TABLE 3.7. Requirements for the Unlnterruptlble Code Acceptance Test -
At Least One Trlad Is In the Idle Process

• Thls test wlll be executed constantly when the triad Is In the idle
process.

2. The triad will determine the difference between TIHE.NOW and R4.TICK.TINE.

ao If this difference Is less than DELTA.KICK, the expected tlme to
execute the KICK instruction to restart another triad,
a normal return will occur.

be If thls difference Is greater than DELTA.KICK the test will determine
the number of triads available to execute the R4 dispatcher (by means

of the TRIAD.STAT1JS(RG4) array) and the number executing the R4
dispatcher (by means of the TRIAD.COUNTER variable). If this
dlfference Is greater than zero, the test will Invoke the alternate
dlspatcher.

60

m i

R4 .TICK .T II_IE > DE_

INVOKE ALTERNATE DISPATCHER [NIL

I

FIGURE 3.7. Unlnterruptlble Code Acceptance Test= Triad Idling

61

3.6. RETIREMENT ACCEPTANCE TEST

Prlor to execution of Its task list, the R4 dispatcher executes the
conflguratlon program whlch generates commands for retlrament of faulty triads.
The actual setting of control variables and the command to retire is performed
by the R4 dispatcher Itself, however, and thls function Is covered by the
Ret I rement acceptance test.

Should a triad be commanded to retire, the dispatcher will zero appropriate bits
in the TRIAD.BUSY and TRIAD.STATUS arrays, pass the responsibility for the R4
frame restart to another tTlad If the retlred one Is R4.RESPONSIBLE, and exit
the R4 dispatcher. The Retirement acceptance test cf.ecks the TRIAD.CIV61D and
TRIAD.STATUS words of all triads to ensure that a faulty triad has both

sucessful ly retired and properly executed Its acceptance test.

The Retirement acceptance test is executed immediately prior to the RESUME(O)
statement at the conclusion of the R4 dispatcher. If no retirement commands

have been issued, the acceptance test is exited. However, if the configuration
task issues a retirement command to the triad, the acceptance test checks the

TRIAD.STATUS bits for the triad. If they are set to FALSE, the retirement

directive has been successfully executed and the test will take a normal exit.

However, if this bit is TRUE, the acceptance test will test for a previous

failure. If no previous failures of this kind have occurred, the acceptance
test will set a failure indicator and set the TRIAD.STATUS word. Any subsequent
retirement failures would terminate execution of the primary dispatcher.

Table 3.8 and figure 3.8 show the requirements and N-S diagram for the

Retirement acceptance test.

62

TABLE 3.8. Requirements for the Retirement Acceptance Test

o

•

•

5.

The Retirement acceptance test will be Invoked Immediately prior to the
RESUME(O) statement concluding execution of the R4 dlspatcher.

The acceptance test will read the TRIAD.C_D word from maln memory. If
the command does not Indicate retirement, the test will exit•

if the TRIAD.CMND is GO.TO. IDLE for of any processor, the acceptance
test will read the TRIAD.STATUS word.

If the TRIAD.STATUS(RG4) Is FALSE, the acceptance test exlts normally•

If TRIAD.STATUS(RG4) Is TRUE, the acceptance test checks a failure In-
dicator designated as RET.FAIL,

a, If RET.FAIL Is FALSE, the acceptance test sets It to TRUE, and sets
the TRIAD.STATUS to FALSE•

b. If RET.FAIL IsTRUE, the test Invokes the alternate dispatcher.

c. RET.FAIL Is set to FALSE as part of system lnltlallzatlon.

63

0

w

o/ 8

ILl
>-

ee

Q

! L
_e

o

, z

v
o Q-

z
-- o

o

laJ
_e

I.L

.=J

z

_.J

z

laJ
>-

64

SECTION 4 - ALTERNATE DISPATCHER

Thls section covers the requirements and design of the alternate dispatcher
as well as the conditions under whlch It returns control to the operating
system. The dispatcher requlrements are based on refs. 4 and 5. The design
of the alternate dispatcher Is Intended (1) to be as simple as posslble
while fulfilling the necessary requlrements and (2) to be Independent of the
primary dlspatcher.

4,1, ALTERNATE DISPATCHER REQUIREMENTS

The alternate dispatcher performs the followlng functions

1. Initialization of system conflguratlon variables.

2. Identlficatlon of lead, support, and Inactive triads

3. Sequenclng and Dlspatchlng of I/O.

4. DIspatchlng of applications routines In a predetermined order.

5. Identifying conditions for return to the primary dlspatcher.

6. Acceptance tests and aborts

Startup Initialization of the alternate dispatcher

Because the system will already be under "warm start" conditions at the time the
alternate dlspatcher Is lnvoked,.relatively little lnltlallzation will be
performed by the alternate dispatcher. It Is antlclpated that other systems
software, e.g. the configuration controller, readlng and setting of error
latches, the IPC Interrupt routines, and supporting ASM routines, will not be
affected by a dispatcher failure. Startup Initialization Includes the
following:

alternate dlspatcher task list
setting the alternate execution counter and repetltlon limit
Informing other triads of the Invocation of the alternate dispatcher
saving the state of the triads, busses, and memories

identification of Jead and support trlads

The only assumption on the number of operational processors made In the design
of the alternate dispatcher Is that at least one triad wlll be functlonal. This

triad will _e responslble for calling the critical tasks of all rate groups In
the appropriate sequence. Non-Crltlcal tasks from all rate groups will run on a
second triad If available. Other operational processors will be designated as

65

spares.

The triad Invoking the alternate dispatcher will designate Itself as lead triad,
and will Invoke the IPC Interrupt routine to Inform other trlads of the
dispatcher change. The first triad responding will be designated support trlad_
remaining processors will be spares. The lead triad will continue to run the
alternate dlspatcher_ the support triad will run all non-critical applications
routines In a fixed order.

_equenclng and dlsoatchlng of I/0

The total responsibility for the reading and wrltlng of I/0 buffers to the
NIL-STD-1553 bus wlll rest with the flrst crltical applications routine to be
run on the R4 Iteration group. This routine will have responsibility for
designating even and odd buffer storage areas and performing the approprlate
updating and sampling as required by the applications routines. In the absence
of detailed speclflcatlons of the MIL-STD-1555 protocols and applications
routines developed for the FTMP_ no further detailed requirements will be
speclfled.

Sequenclna and DlsDatchln 9 of aDpllcatlons routlnes

Because only a single triad will be used to dispatch the critical task list and
e second triad will be used to Implement an Independent set of non-crltical
tasksp the following features which were a necessary part of the p_lmary
dispatcher were ellmlnated In the Interest of simplicity and Independence for
the alternate dispatcher=

(1) the recognition of constralnts for applications routines

(2) the starting of new frames at flxed tlme Intervals

(3) LOCK and UNLOCK functions for memory locations

The fact that features (1) and (3) are not Implemented Is Inconsequential when
only one triad Invokes all applications routines. The loss of feature (2)
Implies that that It Is no longer correct to speak of a rate group or frames.
Thus, In the alternate dispatcher, rate group Is replaced with "iteration group"
and frame Is replaced with elteratlon", I.e. R3 Iteration group, iteration
count_ etc.

The alternate dlspatcher wlll malntaln the execution order of the primary
routine by means of a task list which Is placed Into cache memory as part of the
Initlallzatlon process. The task list Is dlvlded Into three Iteration groups
slmllar to the rate groups of the prlmary routine. The R4 Iteration group,
placed at the beglnnlng of the list, Is executed first. The R:3 Iteration group
Is executed every second iteratlon, and the R1 group Is executed every eighth
Iteration.

Acceptance Test and Restartln 9 of the Primary Dispatcher

At the conclusion of each Iteration, the alternate dispatcher will run its
acceptance test_ and, if passed_ will Increment an execution counter and
re-Invoke the prlmary dispatcher If the executlon Ilmlt has been reached. If

66

the alternate dispatcher falls, an alternate failure flag will be setp and
control passed to another triad. If the routine falls a second time_ then the
processor will enter an abort routine.

67

4.2. DESCRIPTIONOF THE ALTERNATE DISPATCHER

Figure 4.1 Is an N-S dlagram of the alternate dispatcher. When It Is flrst
Invoked, this routine engages In the initialization and startup activities
described above. It then enters the task execution loop In which the critical
words are reset, the Iteration count Incremented, and the tasks from the various
rate groups are run. At the conclusion of an Iteratlonw the alternate
dispatcher acceptance test (similar to that of the primary dispatcher) Is run.

In order to achleve a further degree of Independence, the alternate dispatcher
cal Is the appl Icatlons routines rather than "strlnglng" them by means of the PSD
scheme used In the primary. Prior to the calllng of appllcatlons routlnes, the
Interval timer Is set uslng the START.R4.TIMER procedure (for all Iteration
groups). For the sake of simpllclty and reliability, a single time will be used
In this routine rather than reading a time I lmlt from the task control block.
If a timer Interrupt occurs, control Is passed back to the dlspatcher which then

calls the next task. In addltlon to not providing for the checklng of
constraints as noted above, the alternate dispatcher has no provisions for
checking on the task return code or frame count. As was the case In the primary
dispatcher, appllcatlons routines are expected to set a bit In the appropriate
Iteratlon group crltlcal word and to contain Internal recovery blocks.

The first failure to complete all critical tasks In an Iteration will cause the
dispatcher to be transferred to the support triad and the suspension of
execution of non-critical tasks. If the failure persists, execution of the
alternate dispatcher ceases and the system enters the abort routlne.

Because of the limited capabllltles of the alternate dispatcher, it is desirable
to return to the prlmary routine as soon as possible. As a result, a repetition
Ilmlt, based on the number of previous failures of the prlmary routine, Is set
during the startup lnltlallzatlon. When the dlspatcher completes an lteratlonw
It Increments an alternate execution counter which is then compared to the
repetlt!on Ilmlt. Once the limit Is reached, control Is passed back to the
primary procedure and the system restored to its orlglnal state (unless hardware
failures have occurred In the Intervening time). As was the case prior to
Invocation of the alternate dispatcher, acceptance tests will continue to
monitor all aspects of the operation of the dispatcher and Invoke the alternate
once again upon detection of any fallures.

68

OF. pOOR QUALITY.

PERFORN ALTERNATE OI SPATCHER I NI T IAL IZAT I ON

PERFORM ITERATION INITIALIZATION

SET INTERVAL TIMER

F.XECUTE TASK (TASK SETS CRITICAL WORD)

DO UNTIL R4 LIST COMPLETE

EVEN ITERATIOn1

YES

SET INTERVAL TIMER

EXECUTE TASK

DO UNTIL R:3 LIST COMPLETE

YES
EIGH_ ITERATIONt / NIL

_/No

SET INTERVAL TIMER

EXECUTE TA,,_ NIL

DO UNTIL R1 LIST COMPLETE

CRITICAL WORDS ACCEPTANCE TEST

I
ACCEPTANCE TEST CK't /

/

YEs _ _ NO

VIOUS FAI

INCREMENT ALTERNATE EXECUTION COJm'ER YES __

uNTIL ALTERNATE EXECUTIONS > REPETITION LIMIT

RETURN TO PRINARY DISPATCHER

ENTER
ABORT
ROUTINE

SET ALT.FAIL TO TRUE

CONF"I GuRE TR I AD OUT OF SYS'I"EI,

INDICATE CONOITION ON DISPLAY

KICK

FIGURE 4.1. AI ternete DI spatcher 69

•

o

4.

o

o

7•

A. L. Hopkins, T. B. Smith, and J. H. Lala, FTHP-- A Highly Reliable
Fault-Tolerant Nuitiprocessor for Alrcraftp Proceedings of the IEEE,
Vol. 66, No. 10, pg. 1221, October, 1978

J. J. Hornlng, et. el., "A Program Struc_or for Error Detection and Re-
covery% Proceedlnas of _he ConferQ_ce on Operating System. Theoretical
end Practical Apollcations, IRIA, pp. 174-193, Aprll, 1974

FTMP Operating System Routines listing of 12 August, 1980

J. Lala, aRequlrements for the FTNP Dlspatcher", FTI4P memo 9-79, CSDL,
June 18, 1979

H. Hecht, alntroductlon to the Use of Acceptance Tests for the FTNP Dls-
patcher", SoHaR memorandum, January, 1979

CSDL, FTNPPrJncloles of Operation Volume I!, Rev. 1.1, January, 1980

SoHaR, Inc., Engineering Report on Fault Tolerant Software for the FTMP,
January, 1980

70

APPENDIX A - NEW V,JJ_I.JJ3LE$ P.EDUIF_./)

VAR. NAME ROUTINE

MINSLIP SLIP ACCEP.
TEST

I_O(.R4.TI NE INTERVAL
TIMER ACCEP.
TEST

R1 .CR I T.WD DISPATCHER
ACCEP, TEST

R3.CRIT.WD DISPATCHER
ACCEP. TEST

R4.CRIT.WD DISPATCHER
ACCEP. TEST

RX. INIT.CRIT CRITICAL WORD
RESET ACCEP.
TEST

OLD. FRAIVE,
NEW.FRAME

FRAPE COUNT
ACCEP. TEST

FRAIVE.FA I L FRAI_E COUNT
ACCEP. TEST

R4.APP.COUNT STUCK IN R4
ACCEP. TEST

ALT.EXEC.COUNT ALTERNATE
DISPATCHER

REP.LIMIT ALTERNATE
DISPATCHER

PRIM.FAIL.COUNT ALTERNATE
DISPATCHER

PREV.ALToFAIL ALTERNATE
DISPATCHER

TASK.LIST ALTERNATE
DISPATCHER

PURPOSE

maximum absolute value SLIP can have prior
to the Invocation of the alternate dispatcher

Maximum value that can be loaded Into an R4
timer (I.e. maximum execution time for an
applications routine)

Indicator that R1 critical tasks have been

dispatched

Indicator that R3 critical tasks have been

dispatched.

Indicator that R4 critical tasks have been

dispatched.

Initial values of critical words

Lead and lag counters to ensure that frame
counter is appropriately Incremented

Counter for number of errors In Incre-

mentin 9 frame count

Counter of dispatched R4 tasks

Counts executions of alternate dispatcher.

Repetition limit for alternate dispatcher
after which primary Is re-lnvoked,

Counts primary dispatcher failures.

Indicator of previous alternate dispatcher
failure

Array of task Identiflcatlons for alternate
dispatcher.

71

VgR. NAME ROUT I NE PURPOSE

DELTA

DELTA.K ICK

UNINTERRUPT.
CODE ACCEP.
TEST

UNINTERRUPT.
CODE ACCEP.
TEST

Time after new frame start for R4.RESP flag
to be set to FALSE.

Time after new frame start for Idllng. triad
to start the R4 dlspatcher If It Is not R4
responsible

72

APPENDIXB - UNINTERRUPTIBLE ASM ROUTINES

Because failure detection by the proposed acceptance tests is contingent upon
the Implementatlon of the R4 Interrupt, sections of code In which this Interrupt
Is disabled are of significance. Failure to exit from these routines would
result in Inhlbitlon of the R4 rate group restart, and a major but undetected
failure would result If the "hung upa triad Is R4 responslble.

ASM routines called by the AED rate group dispatchers and assoclated procedures
were checked for the presence of a SWAPMSKcommand that would disable all (and
hence R4) Interrupts. The following procedures were examined=

D I SP. R4
DISP.RJ.R1
SELECT.TASK
EXECUTE
HOLD.TI HER
RELEASE.TIIVER
READ. EL
SET.BIT
KICK
LOCK
UNLOCK

Table B.1 shows the list of ASM routines In these procedures, and an Indication
of whether all Interrupts are disabled. Table B.2 shows the eight ASM routines
whlch disabled Interrupts, their function, and notes on the complexity of the
code during the Interrupt defeat.

Software failures In routines with straight-line code or with a Ilmlted number
of uncondltlonal Jumps are unlikely. However, when loops or condltlonal Jumps

are present, the possibilities of failure Increases. Based on Table B.2, it Is
possible to rule out HOG.BUS and posslbly RELEASE.BUS as sources of concern.
However, for the remainder of the ASH routines, It iS necessary to determlne
whether the R4 Interrupt should be enabled, whether other means exist to detect
the R4 Interrupt, or whether additional measures (which will Increase the
complexlty of the operating system) are appropriate.

73

Table B.1

AEDProcedures end Associated ASH Routines

AED Procedure ASM Routine Unlnterruptable Code

D ISP4

SELECT.TASK

EXECUTE

HOLD.TIMER

RELEASE TIMER

TIMER, INT,HANDLER

READ.EL

SET.BIT

CLEAR.T.EL

KICK

LOCK

READ YES
WRITE YES

PEND YES
RESUME YES
SWAPMASK NO

READ YES

WRITE YES

SWAPMASK NO

READ YES
WRITE YES
ACTIVATE YES
ASNBIT NO

SWAPMASK NO

SWAPMASK NO
WRITE YES

PEND YES
RESUME YES

READ YES
HWRITE YES
WRITE YES

HOG.BUS YES
ASNBIT NO
WRITE YES
RELEASE.BUS YES

SREAD YES

HOG.BUS YES

READ YES

HWRITE YES

RELEASE.BUS YES

HOG.BUS YES
READ YES
WRITE YES
RELEASE.BUS YES
SWAPMASK NO

74

Table B.1 (continued)

AEDProcedures and Associated ASMRoutines

AEDProcedure

UNLOCK

ASMRoutine Unlnterruptable Code

SWAPMASK NO
HOG,BUS YES
READ YES
ASNBIT NO
WRITE YES
HWRITE YES
RELEASE.BUS YES

75

ASHRoutine

READ

WRITE

ACTIVATE

PEND

RESUME

HWRITE

HOG.BUS

RELEASE.BUS

ASM

Table B.2

Routines Containing Unlnterruptlble

Called By Description

Sections of Code

Note

DI SPATCHERS
SELECT.TASK
EXECUTE
READ. EL
KICK
LOCK
UNLOCK

DISPATCHERS
SELECT.TASK
EXECUTE
RELEASE,TIMER
SET.BIT
LOCK
UNLOCK

EXECUTE

TIMER. INT.HANDLER

DISPATCHERS
TIMER. INT.HANDLER

READ,EL

SET.BIT
KICK
LOCK

SET.BIT
KICK
LOCK

Reads from maln
memory; Interrupt
Inhibited while
data Is transferred,

Writes to main

memory; Interrupt
Inhibited while
data Is transferred

Store new PSD, mask
string If necessary

String new PSD behind
current PSD

Resume previously
Interrupted task
(take old PSD and
make current).

Write to hardware
register, Inhibits
Interrupt during
hardware transfer.

Increment HOG.WORD

Decrement HO0. WORD

76

Notes for Table B,2

1. SWPHSK after BEGIN label (line 58) Inhibits Interrupt. Several Jumps In
each transfer.

2. Part of KERNEL. 4 Jumps (2 conditional) In uninterruptlble sequence,

3. 1 I oo,pt 1 conditional Jump, 17 lnstTuctlons In unlnterruptlble sequence.

4. Part of KERNEL (not yet clear how entered). SWPHSK assumed prior to
execution_ 15 statements, 2 Jumps prior to SWPHSK which would re-enable
,Interrupts.

5. Numerous conditional Jumps (depending on amount of data to be transferred)
and ASH statements in unlnterruptlble execution sequence.

6. 7 statementsp no Jumps or loops, in unlnterruptlble sequence.

8. 1 conditional Jump, 1unconditional Jump, 22 stat_ents In uninterruptlble
sequence.

e

%

1. Report No. 2. G_ernment Accession No.

NASA CR-166070

4. Title and Subtitle

Fault-Tolerant Software for the FTMP

7. Author(s)

Herbert Hecht and Myron Hecht

9. Performing Organization Name and Address
Subcontractor:

The Charles Stark Draper Laboratory, Inc. SoHar Inc.
555 Technology Square Los Angeles,
Cambridge, MA 02139 CA

12. S_nsoring Agency Name _d Addr_$

National Aeronautics and Space Administration

Washington, DC 20546
v

3. Recipient's Catalog No.

s. R'epo,_Date
March 1984

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11, Contract or Grant No.

NAS1-15336

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

505-34-13-33

15. Supplementary Notes

Langley Technical Monitor: Charles Meissner, Jr.
Prepared by SoHar Incorporated under Subcontract 564 to Charles Stark Draper Lab.

16. Abstract

The work reported on here provides protection against software failures in
the task dispatcher of the FTMP, a particularly critical portion of the system
software. Faults in other system modules and application programs can be
handled by similar techniques but are not covered in this effort. Goals of
the work reported on here are: (I) to develop provisions in the software
design that will detect and mitigate software failures in the dispatcher portion
of the FTMP Executive and, (2) to propose the implementation of specific software

reliability measures in other parts of the system.

Beyond the specific support to the FTMP project, the work reported on here
represents a considerable advance in the practical application of the recovery
block methodology for fault tolerant software design.

17. Key Words (Suggested by Author{s))

Fault Tolerant Software,
Recovery Block, Fault Tolerant
Multiprocessor, Fault Tolerant
Dispatcher

18. Distribution Statement

19. Security Cla=if. (of this report)

Uncl assi fi ed 20. Security Classif. (of this page)Unclassified

21. No. of Pages

82
22. Price

...... _

